

OxyGenie®

Inspired Oxygen Control

Automatic O₂ control for
the SLE6000 ventilator

 SLE

When the smallest thing matters

OxyGenie®: Works like Magic

OxyGenie®: Inspired Oxygen Control

Why Auto O₂?

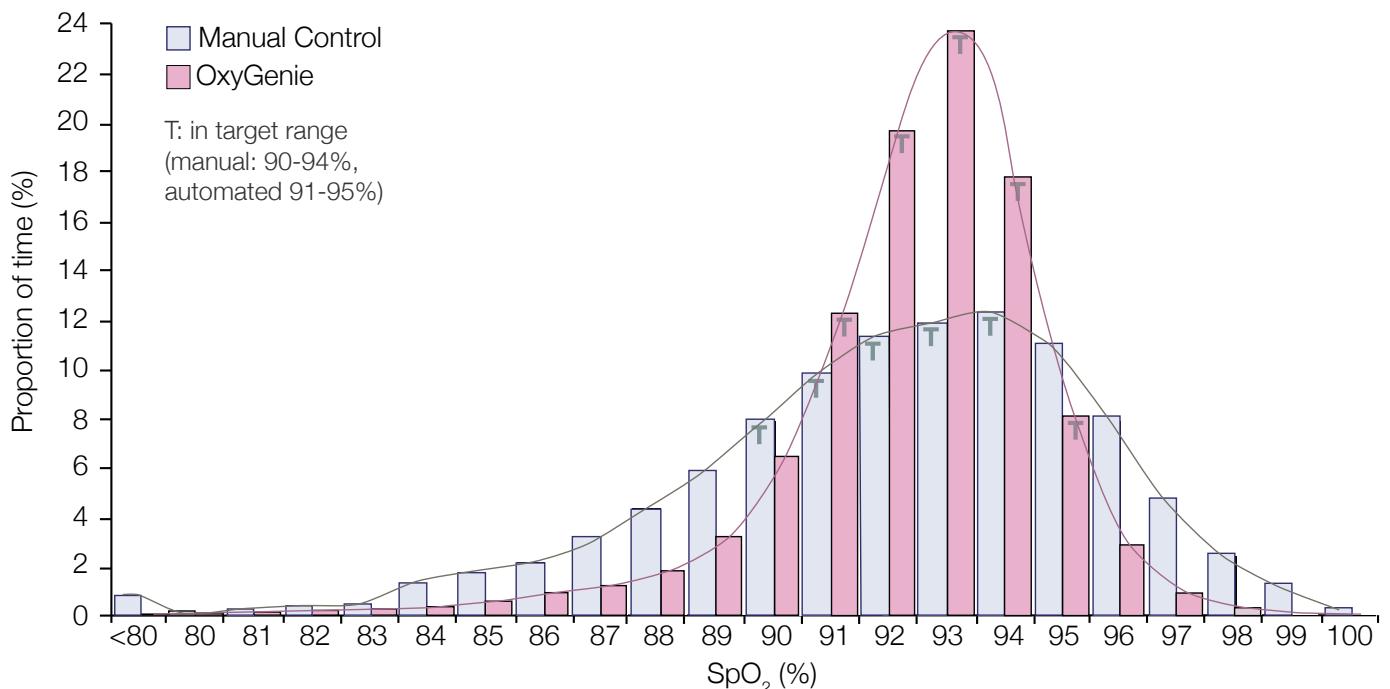
Oxygen is one of the drugs most frequently used in neonates, often with the highest concentrations given to those with the least developed defence mechanisms to its potentially toxic side effects.

Even minor variations in blood oxygen levels may affect longer term outcomes such as mortality, retinopathy of prematurity (ROP) or necrotising enterocolitis (NEC) as has been shown in a number of recent studies ^[1].

In addition to the importance of closely maintaining an effective baseline target range, avoiding intermittent hypoxaemia or hyperoxaemia (e.g. a saturation of <80% or >95%) is equally important ^[2].

Decrease workloads

With the high workload medical staff caring for preterm infants often face, an automatic O₂ system that can help reduce the time spent adjusting the ventilator and allowing staff to spend more time caring for the patient would be invaluable.


The properties required for such control, however, are extensive: they should be able to respond to both a gradual change in oxygen requirements and sudden hypoxaemia, and should also be capable of avoiding the build-up of increasing fluctuations in FiO₂/SpO₂ during periods with changeable SpO₂ values. Infants with significant lung disease also need the algorithm to be responsive to their requirements.

The introduction of a reliable, accurate controller for oxygen would give a reduction in manual interventions enabling an improvement in efficiency of care.

OxyGenie®: Reducing your Workload

How does OxyGenie compare? Time in Target range. [3]

OxyGenie

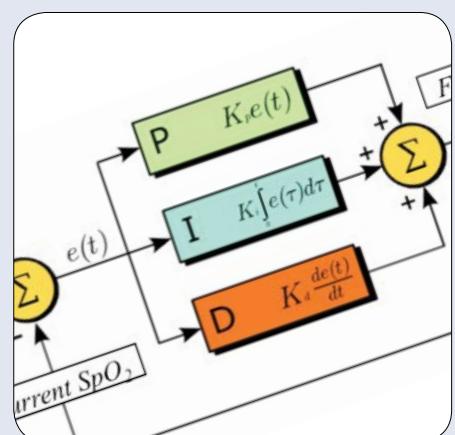
In 2016, SLE saw an Auto O2 system which really excited us.

It was responsive, safe and most importantly, effective.

It managed to maximise the time SpO_2 spent within a target range of 5%; it looked at many different inputs to determine an action; it analysed the inputs every second and could make as many changes as necessary and it reacted well when it experienced sudden changes in baby saturation.

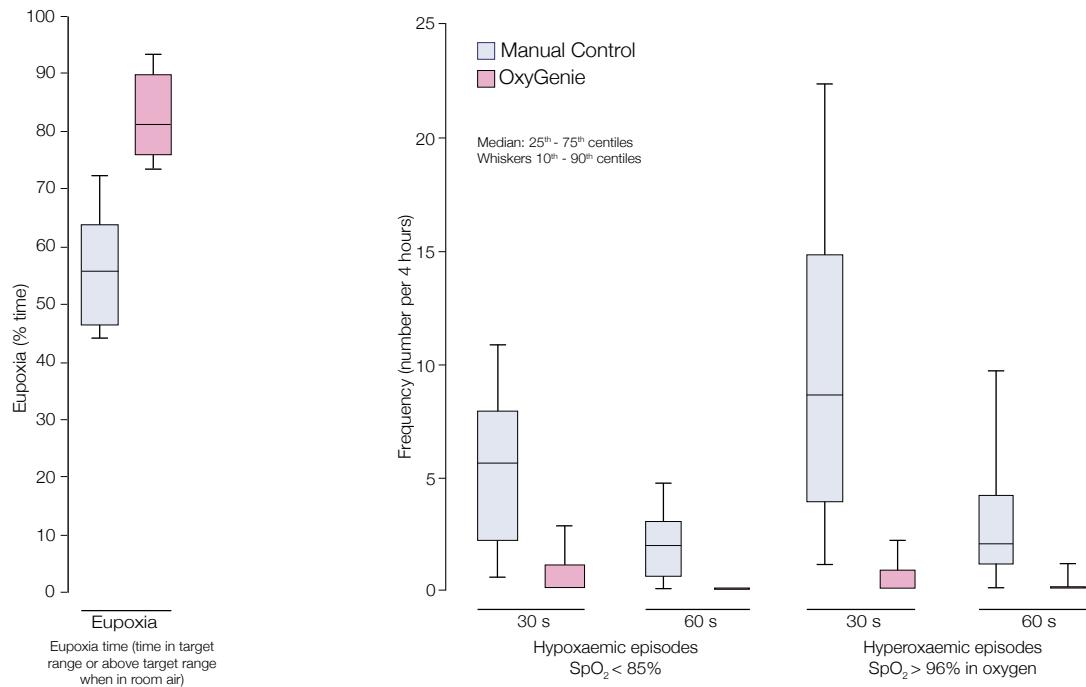
Additionally, it had been shown to virtually eliminate prolonged episodes of both hyperoxaemia, and hypoxaemia [3].

We have incorporated this new system into a software module for the SLE6000 and we're calling it OxyGenie®, because it could make your wish for a stable saturation come true!


Reactive Algorithm

Developed at the University of Tasmania, in collaboration with the Royal Hobart Hospital, the OxyGenie software module uses a Proportional/Integral/Derivative algorithm which makes it responsive to SpO_2 deviations, allowing it to recognise serious instability and then be able to safely and quickly counteract it.

Peace of Mind


The new algorithm incorporates additional software that has a different response depending upon the severity of lung disease, plus target range attenuation and Severinghaus compensation.

The overall design of the software allows it to respond smoothly and effectively to both gradual and sudden changes in SpO_2 .

OxyGenie[®]: Better than manual control

How does OxyGenie compare? Hypoxaemic and Hyperoxaemic episodes. [3]

Graph 1 (left): shows OxyGenie-treated babies spend more time in Eupoxia. (Time in target range or above target range when in room air). Note, there is no overlap in distribution.

Graph 2 (right): shows OxyGenie significantly reduces the number, duration and severity of hypoxaemic/hyperoxaemic episodes, and virtually eliminates severe episodes of 60 s or more [3].

What it means for you and your patients

Responsive

- The software reads the SpO_2 values at one second intervals and reacts within one second [4].
- 25% improvement in time within target range for SpO_2 [3].
- Reduced incidence of hypoxaemia and hyperoxaemia [3].
- No lock-out times [5].
- Uses Masimo™ SET system

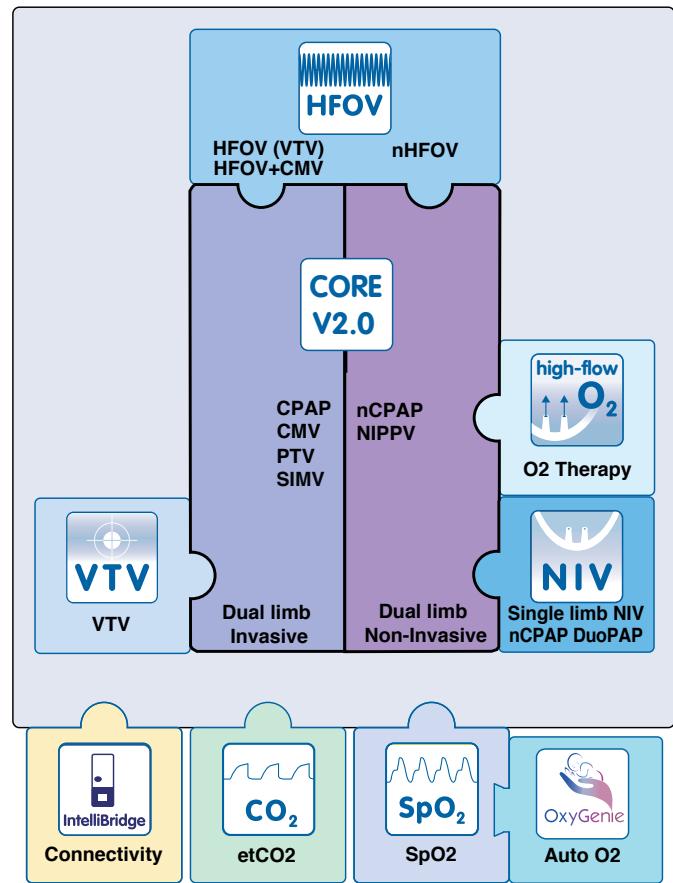
Adaptive

- Target range attenuation (modifies sensitivity when nearer mid-point of range).
- Includes compensation for lung disease (modifies sensitivity in babies with higher reference FiO_2).
- Severinghaus compensation (Takes into account the non-linearity of PaO_2 - SpO_2 curve) and helps to reduce hyperoxaemic events [4].

Intuitive

- Decrease the required staff time in preterm infants with frequent desaturations.
- Works in all modes on the SLE6000 including NIV and HFOV.
- User adjustments per hour [3]:
Manual mode - 2.3
Auto O2 (OxyGenie) - 0.24

SLE6000: Ventilate with Confidence


SLE6000 Integration

Various software and hardware modules can be added to the SLE6000 during production or at a later date as an upgrade.

To add OxyGenie to an SLE6000 requires the OxyGenie software module plus the SpO₂ module.

Integrating it into the SLE6000 also gives the caregiver a chance to observe the SpO₂ trend against the FiO₂ trend on the same time scales allowing easy correlation between cause and effect.

What's more, the integration is so seamless that only two additional controls are needed on the SLE6000's Lunar™ interface. There's one to set your target range (default 91-95%) and another to turn OxyGenie on and off.

References

¹ Saugstad OD, Aune D.

Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. *Neonatology* 2014;105:55-63.

² Poets CF, Roberts RS, Schmidt B, et al.

Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. *JAMA* 2015;314:595-603.

³ Plottier GK, Wheeler KI, Ali SKM, Sadeghi Fathabadi O, Jayakar R, Gale TJ, Dargaville PA.

Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. *Arch Dis Child Fetal Neonatal Ed* 2017; 102: F37-F43.

⁴ Peter A Dargaville, Omid Sadeghi

Fathabadi, Gemma K Plottier, Kathleen Lim, Kevin I Wheeler, Rohan Jayakar, Timothy J Gale

Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant

Arch Dis Child Fetal Neonatal Ed 2016;0:F1-F6.

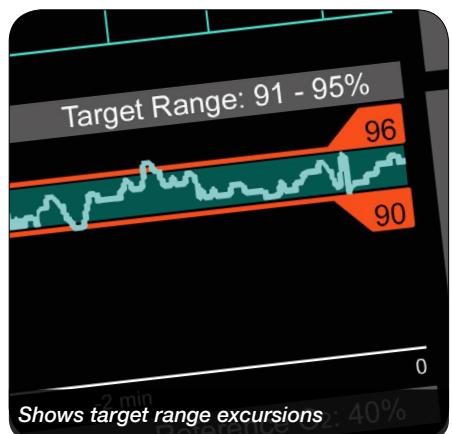
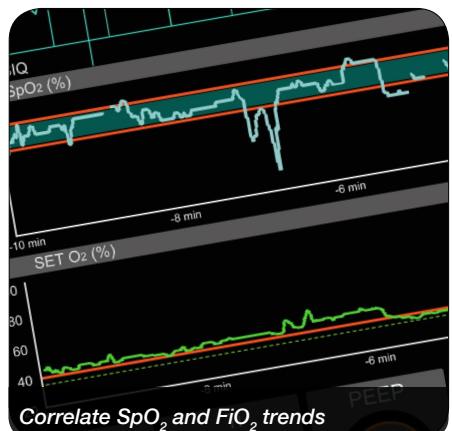
⁵ Clarke, A., Yeomans, E., Elsayed, K., Medhurst, A., Berger, P., Skuza, E. and Tan, K. (2015)

A randomised crossover trial of clinical algorithm for oxygen saturation targeting in preterm infants with frequent desaturation episodes. *Neonatology*, 107 (2), 130-136.

Specifications and Part numbers

OxyGenie® Part Numbers

Part Number	Description
Z6000/CLP	OxyGenie® Auto O ₂ software. (Requires SpO ₂ software module to be already installed, plus SLE's uSpO ₂ (Masimo™ SET) cable and sensors). See below and separate data sheet.



Specifications

Item	Description
Main software	Software control system that allows targeting of SpO ₂ values by controlling FiO ₂ . Works in conjunction with Masimo™ software module and Masimo™ sensors to monitor SpO ₂ values (bought separately)
Controls	Adds additional (start/stop) option to FiO ₂ parameter controller. Range selector in SpO ₂ utilities menu. Ranges are: 90 - 94%, 91 - 95% (default), 92 - 96%, 94 - 98% Manual override (timed, for 30 seconds)
Waveforms	Additional SpO ₂ screen can show any one ventilation parameter plus plethysmogram and trends of SpO ₂ and FiO ₂ .
Alarms	Alarms automatically set on SpO ₂ software, corresponding with target range (1% above high and 1% below low). These can be manually set as well. Alarm indications shown in Alarm bar. Alarm level indicators on SpO ₂ and FiO ₂ graphs.
Indicator	Status panel (in bottom right-hand corner) shows OxyGenie status such as 'Auto', 'Manual Override' (with countdown) or 'Waiting for Signal'.
Trends	Trending information for SpO ₂ and FiO ₂ can be shown simultaneously. Up to 14 days of data are stored for each parameter.

Specifications subject to change without notice

SpO₂ Part Numbers

Part Number	Description
Z6000/SPO	SLE6000 SpO ₂ upgrade software module.
L6000/SP2/KIT	SLE uSpO ₂ cable (Masimo™ SET) (1.83 m) (includes LNCS® sample sensor starter kit).
Sensors	
LSPO2/2319	LNCS Inf-3 - Infant, SpO ₂ adhesive sensor, 3 ft, 20/box
LSPO2/2320	LNCS Neo-3 - Neonatal, SpO ₂ adhesive sensor, 3 ft, 20/box
LSPO2/2321	LNCS NeoPt-3 - Neonatal, SpO ₂ adhesive sensor, 3 ft, 20/box
Accessories	
LSPO2/4089	RD to LNC Adapter cable, 3 ft. (to allow the use of Masimo RD sensors)

SLE Limited

Twin Bridges Business Park

232 Selsdon Road

South Croydon

Surrey

CR2 6PL

UK

+44 (0)20 8681 1414

+44 (0)20 8649 8570

sales@sle.co.uk

www.sle.co.uk